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Based on the homography between a multi-source image and three-dimensional (3D) measurement points,
this letter proposes a novel 3D registration and integration method based on scale-invariant feature
matching. The matching relationships of two-dimensional (2D) texture gray images and two-and-a-half-
dimensional (2.5D) range images are constructed using the scale-invariant feature transform algorithms.
Then, at least three non-collinear 3D measurement points corresponding to image feature points are used
to achieve a registration relationship accurately. According to the index of overlapping images and the
local 3D border search method, multi-view registration data are rapidly and accurately integrated. Exper-
imental results on real models demonstrate that the algorithm is robust and effective.
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Three-dimensional (3D) registration and integration are
difficult but necessary steps in performing structured
light 3D measurements[1]. A multiple-view measurement
is needed to fully cover an object because of object oc-
clusion, shadows or limited view depth, and so on. The
overlapping layers of the same object must be integrated
before the whole object is completely measured. The goal
of registration is to determine the transform function of
a view from one coordinate system to another[2−8].

Different methods of registration have been
developed[2−8], and can be divided into three cate-
gories. The first method involves the use of support-
ing hardware, such as turntable methods[2], gyroscopic
self-positioning devices[3], etc. This method relies on pre-
cision supporting devices, and has a limited application
range. The second method adds some additional features
to the surface of the object and identifies the designed
features to achieve registration. This method includes
the paste landmark technique[4] and fixing the calibra-
tion plate on the object[5], among others. However, one
main drawback of this method is that the object may
not be completely measured because of the obstruction
caused by the additional feature. The third method is
completely based on the 3D measurement data. This
technique starts from an approximate registration, and
iteratively reaches the final registration by minimizing
an error functional, such as the iterative closest point
algorithm[6] and various improved algorithms[7−8]. This
method has the smallest measurement constraint and
is most widely applied. However, its biggest drawback
is the requirement of a good initial position; otherwise,
convergence is not guaranteed[7−8].

To maximize the convenience of application, 3D mea-
surement data and the related measurement process are
used to simplify the complex problem. The matching
scale-invariant features from two-dimensional (2D) gray
images and two-and-a-half-dimensional (2.5D) range im-
ages are accurately recognized. The homographic rela-

tionship is then used to solve 3D registration and integra-
tion. The novelty of this approach is characterized by the
following features: the 3D registration and integration
are realized only with the captured 2D image, which is
feasible; a scale-invariant feature point detection based
on phase shifting 2.5D range image is proposed; the
registration based on feature matching can be used for
large view change; and it has the smallest measurement
constraint and is most widely applied. This registration
method is flexible, and the only main constraint is that
two view images must contain the overlapping region.

The 2D gray and 2.5D range images are the sources
of data of the structured light 3D measurement. There-
fore, the complicated 3D registration problem can be
simplified by achieving the transform relation of these
measurement images.

Previous studies[9,10] have presented the scale-invariant
feature transform (SIFT) algorithm for extracting dis-
tinctive features from images that can be invariant to
image scale, rotation, and zoom. The algorithm has a
good effect on image affine, view, and brightness change.
The fundamental principle of SIFT is the detection idea
of the Laplace of Gaussian (LoG) method[9−11].

To detect the invariant feature using a simple and
efficient image operation, previous studies[9] have em-
ployed the difference of Gaussian (DoG) operator instead
of LoG. The locations invariant to the scale change of
the image can be determined by searching for stable fea-
tures across all possible scales using a continuous scale
function known as a scale space[11].

Two images of the dental plaster model are captured
at view change of about 45◦, as shown in Fig. 1. The
blue cross markers of the image are the detected scale-
invariant feature points using SIFT algorithm. The red
circle markers are the matching points. The algorithm
is found to be fast; however, its effective view change
range is limited. As shown in Fig. 1, there are only two
matching points. The current study also found that the
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Fig. 1. Scale-invariant feature points. Detected feature points
of (a) the initial-view image and (b) the image view change.

Fig. 2. Transition tilt simulation figure of different camera
views.

algorithm cannot detect feature points, which have poor
texture gray information despite obvious 3D character-
istics of the region. The middle area of the tooth 3D
surface is shown to be complex. The gray image is also
insufficient, which indicates that the algorithm cannot
achieve feature detection (Fig. 1).

To determine the invariant features at the large view
change, previous studies[12] have developed a fully affine
SIFT method, called affine-SIFT (ASIFT). This method
simulates a set of sample views of the initial images ob-
tained by varying the axis orientations (latitude θ and the
longitude ϕ angles) of two cameras, as shown in Fig. 2.
The SIFT method is then applied to all generated images.
The method is mathematically proven to be fully affine-
invariant. The basic principle of the method is that any
planar smooth deformation can be approximated around
each point by an affine map using the first order Taylor
formula. The total simulated area is about 13.5 times the
area of the original image[12]. Therefore, the complexity
of the ASIFT feature computation is 13.5 times the com-
plexity of computing SIFT features.

The ASIFT method is claimed to achieve full affine
transform feature detection and a greater number of de-
tected feature points. Two identical images are used to
examine this method, as shown in Fig. 3. More feature
points are detected using ASIFT than using SIFT. How-
ever, feature points that have poor-texture gray informa-
tion still cannot be detected, as shown in the middle part
of the tooth. There are also almost no matching feature
point on the surface of the tooth.

The structured light measurement system is based on
sinusoidal phase-shifting stripes[13]. At least three phase-
shifting stripes can solve the primary phase. The primary
phase can be revealed with the unwrapping algorithm to
acquire the continuous phase[14]. The unwrapped phase
value expresses the object height, and is also known as

the range image. The range image is a 2D image showing
the distance points in a scene from a specific point. It
has pixel values that correspond to distance (i.e., brighter
values mean shorter distance, and vice versa), as shown
in Figs. 4(b) and 5(e). It is also called a 2.5D image.
This type of imaging modality provides direct and ex-
plicit geometric information that is considered useful in
many applications. This modality is also potentially un-
changed by variations in lighting and viewpoint[15]. The
shape of an image surface should remain constant un-
der viewpoint changes. Hence, the local distribution of
curvatures observed on the surface should also remain
constant.

The computation of curvatures based on the range im-
age is simpler than 3D data, because the pixel coordi-
nate of the range image is a regular grid. The neigh-
borhood topology information is also known and does
not need complex topology triangular construction. The
range image can be considered as a discrete quadratic
surface. The first and second partial surface deriva-
tives can be computed with the first image differences
[fx(i, j), fy(i, j)] and the second-order image differences

[fxx(i, j), fyy(i, j), and fxy(i, j)]
[16]. The surface curva-

ture can be used to divide the principle, mean, and Gaus-
sian curvatures[15]. The mean and Gaussian curvatures
are computed as

H(i, j) = {[1 + f2
y (i, j)]fxx(i, j) + [1 + f2

x(i, j)]fyy(i, j)

− 2fx(i, j)fy(i, j)fxy(i, j)}

/{2[
√

1 + f2
x(i, j) + f2

y (i, j)]3}, (1)

K(i, j) =
fxx(i, j)fyy(i, j) − f2

xy(i, j)

[1 + f2
x(i, j) + f2

y (i, j)]2
. (2)

The degree of surface curving based on estimates of H
and K can be computed and utilized as a weight to
indicate the strength of the curvature at a particular
point[15]:

CL(i, j) =
√

2H2 − K. (3)

Figures 4(a)–(c) are the texture gray image, range im-
age based on phase shifting, and curvature image of one
view, respectively. Figures 4(d)–(f) are the respective
images of another view. Figures 4(c) and (f) are the
curvature images based on range image; these are called
feature image in this letter. The value of each pixel is
computed with the Eq. (3). The computed values are
normalized as [0, 255), and are shown with gray value as
Figs. 4(c) and (f), respectively. The newly developed
feature image based on phase shifting is detected using

Fig. 3. Affine scale-invariant feature points. Detected feature
points of (a) the initial-view and (b) the image view change.
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Fig. 4. Range image of an object and its feature image. (a)
Texture gray image at initial view. (b) Range image at initial
view; (c) feature image at initial view; (d) texture gray image
at view change; (e) range image at view change; (f) feature
image at view change.

Fig. 5. Correct matches of multi-source images after pu-
rification. (a) Correct matches of a gray image using (a) the
SIFT algorithm, (b) the ASIFT algorithm, and (c) the SIFT
and ASIFT algorithms.

the ASIFT and SIFT algorithms. The number of the de-
tected feature points is large. Hence, some points based
on their strengths are shown in Fig. 6. The matching
feature points are similar with the two algorithms, and
are marked with red circle points in Fig. 6. The detected
features are distributed in the feature regions of 3D sur-
face. Compared with Figs. 1 and 3, the detected scale-
invariant feature points of a 2.5D range image can reflect
3D object feature information, and have less impact on
view changes. These characteristics are complementary
to the method of feature detection based on a texture
gray image.

The previous operations have assigned an image loca-

tion, scale, and orientation to each feature point. This
step is performed to compute a descriptor for the lo-
cal image region. The method is the same as the SIFT
algorithm[9].

The acquired matching points are not completely cor-
rect based on multi-source images. Thus, the pu-
rification operation is needed to filter out the incor-
rect matching points and ensure the accuracy of reg-
istered data. An improved random sample consen-
sus (RANSAC) algorithm[17] is developed for this pu-
rification operation.

Different view images of the same scene have homo-
graphic relationships. In a homogeneous coordinate, im-
ages IX(xi, yi, 1)T and Ix′(x′

i, y
′

i, 1)T undergo a perspec-
tive transformation, as shown below:

k

[

xi

yi

1

]

=

[

h1 h2 h3

h4 h5 h6

h7 h8 h9

][

x′

i

y′

i

1

]

, (4)

where H = (h1, h2, h3, h4, h5, h6, h7, h8) is a transforma-
tion matrix with eight degrees. The matching points are
purified using the transformation relationship.

The RANSAC algorithm is an iterative method for es-
timating the parameters of a mathematical model from
a set of observed data containing outliers. This algo-
rithm is improved in this letter based on our application.
In the first step of the improved RANSAC algorithm,
the subset of the sample data is alternatively extracted
from matching data characteristics instead of performing
complete random extraction by the original algorithm.
The squared ratio of the distance between the nearest
and second nearest matching points can basically ex-
press the accuracy of the matching points. Hence, the
first sort is based on the ratio value, and the sample
matching point subset is then extracted according to the
ratio order. This operation increases the accuracy of the
initialization model, reduces the computation procedure,
and improves the efficiency of purification. The error
tolerance of the fitting model is 0.1 in the improved al-
gorithm.

The matching results after purification are shown in
Fig. 5. The correct matching result using the SIFT algo-
rithm is shown in Fig. 6(a). There are only two correct
matches on the gray image at a large view change. Figure
5(b) shows the correct matching result using the ASIFT
algorithm. The correct matches are almost entirely dis-
tributed in the tooth root, and the complex top tooth
surface has almost no correct match. Figure 5(c) shows
the correct matching result based on the proposed range
feature image. The correct matches are complementary

Fig. 6. Scale-invariant feature points of a range image. De-
tected feature points of (a) an initial-view image and (b) an
image view change.
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Fig. 7. Registration result of two image views. 3D measure-
ment result of (a) one view and (b) another view; (c) regis-
tered data of the two views.

to those based on the texture gray image. There are
many correct matches on the top tooth surface. All of
the correct matches will be used in the 3D registration.

The goal of registration is to find the fitting trans-
formation matrix that can be acquired with a unit
quaternion[18]. The 3D data corresponding to 2D
matches are set to Q = {qi} and P = {pi}. The com-
puted rotation matrix R and the translation matrices T
make up the registration relationship H of the two-view
3D data. The two-view 3D measurement data are then
registered, as shown in Fig. 7. The degree of the two
views is about 90◦. Multi-view measurements are regis-
tered according to the above method.

The integration of registered data is divided into two
steps. A view image containing feature points Q is set to
IQ(i, j) and (0 6 i 6 iw, 0 6 j 6 jh), as shown in Fig.
8(a). Another view image containing feature point P is
set to IP (i′, j′)(0 6 i′ 6 iw, 0 6 j′ 6 jh), as shown in
Fig. 8(b). (i, j) and (i′, j′) are the captured image pixel
coordinates, while iw and jh are the width and height of
the captured image, respectively. With the registration
transformation H:

IP ′(i′′, j′′) = IP (i′, j′) ∗H, (5)

where IP ′(i′′, j′′) is the transformed image. The pixel
coordinate point (i′, j′) is the overlapping image pixel
if its corresponding transformation coordinate meets
0 6 i′′ 6 iw, 0 6 j′′ 6 jh, and vice versa. Therefore, the
overlapping regions and boundaries are found. Accord-
ing to the index, only one-view image data are computed
to achieve integration, as shown in Fig. 8(g).

After the first integration based on 2D image regis-
tration, some gaps are observed at the boundary of the
overlapping regions. These gaps are caused by perspec-
tive transformation, as shown in Fig. 8(g). This problem
is solved using a local 3D search method according to the
index of the overlapping image boundary. A belt region
is expanded along the boundary line of the overlapping
region, as shown in the blue line in Fig. 8(c). The 3D
points corresponding to the pixels of the region repre-
sent the local overlapping data. The width of the belt
is set to 10 pixels. The distance between the 3D points
from one view to another view is used to judge the same
overlap point. If the distance is less than a threshold (dt

=0.04 mm), the two points of the two views only retain
one point. Hence, boundary integration is accurately
performed, as shown in Fig. 8(h).

To verify the proposed method, an experiment was
conducted on a plaster tooth model, as shown in Fig.
9. Tooth surfaces are highly complex and have various
surface morphologies. Theoretically, their gray infor-
mation is also abundant. However, the captured gray

images have poor information (such as images presented
in paper sometimes), which may be caused by structured
light, camera angle, image zooming, and so on. There-
fore, a range image can be a very good complement.
We contracted a miniaturized 3D measurement system
to scan the tooth model. Figures 9(a) to (d) show the
four tooth model measurement data from different views,
respectively. Figures 9(e) and (f) show four registered
and integrated data based on the above method, respec-
tively. Figure 9(g) is the surface model of the four-view
integration result. The time cost of four view registra-

Fig. 8. 3D data integration based on a registered image. (a)
One-view gray image. (b) Another-view gray image. (c) Reg-
istration result of two-view images. (d) 3D measurement data
of a one-view image. (e) 3D measurement data of an another-
view image. (f) Registration result of two-view 3D measure-
ment data. (g) Integration result based on image registration.
(h) Precise integration result.

Fig. 9. Registration and integration results of a plaster tooth
model. (a–d) Four views measurement data. (e) Registration
results of multi-view 3D measurement data. (f) Integration
results of multi-view 3D measurement data. (g) 3D geomet-
ric surface model of multi-views. (h) Registration accuracy
of the first and second view. (i) Registration accuracy of the
second and third view.
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tion is about 8 s. The whole procedure contains image
capture, data computing, and the result shown. The reg-
istration and integration of two views only took less than
500 ms. In order to verify the registration accuracy, we
used Geomagic Studio software to analyze the registra-
tion result. The statistical results of the first and second
view are as follows: average distance of 0.0291 mm and
Std. Dev of 0.0272 mm, as shown in Figs. 9(h) and (i) is
the registration accuracy result of the second and third
views. The registration accuracies of all views are less
than 0.035 mm. The estimation value roughly represents
the accuracy of our developed registration algorithm.

In conclusion, this letter presents a new 3D registra-
tion and integration method for measurement data. The
method completed 3D registration successfully. Firstly,
the 2D gray image and 2.5D range image of the mea-
surement process are considered as multi-source images.
Scale-invariant feature algorithms are integrated and
used for accurate detection and matching. These algo-
rithms also overcome incorrect matching due to short-
comings in a large view change, view depth change, and
certain poor light reflections on an image. Multi-view
3D measurement data are then registered and integrated
based on the matched feature points. The algorithms
used resolve a difficult problem, and have a wide range
of potential applications.
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